Probabilistic Hazard Information (PHI)

Experiments in Short-term Hazardous Weather Information at NSSL

Contributions:

David Andra Harold Brooks Don Burgess Kristin Kuhlman Jim LaDue **Les Lemon** Mike Magsig **Kevin Manross Kiel Ortega Kevin Scharfenberg Travis Smith Greg Stumpf**

Gridaea Probabilistic Hazara

Beyond Storm-Based Warnings: Adaptive Warnings

Risk = Hazard * Exposure * Response Time

Tornado, wind, hail, other hazards

How to account for this?

- The meteorologist is the expert on interpreting the hazard and its uncer
- The meteorologist cannot anticipate everyone's exposure and response t

Gridded Probabilistic Hazard

Storm-Based Warning Shortcomings

- One-size-fits-all: threat information for the polygon is "monotonic".
 - Each location inside polygon is under exact same threat for the exact same time period
 - Each location inside polygon is given 100% certainty of event
 - Each location outside polygon is given 0% certainty of event
- Storm-based warnings are <u>area</u> forecasts verified by <u>point</u> events.
- What happens when storm motion changes when storm motion changes

Storm-Based Warning Shortcomings

Very little overlap between adjacent warnings can lead to inequitable lead times for nearly-adjacent locations

В

User "A" gets many minutes lead time...

...while User
"B" gets only
0-5 minutes

Gridded Probabilistic Hazard

Probabilistic Hazard Information (PHI) Experiment Objectives

- Within the NOAA Hazardous Weather Testbed (HWT), we teamed up with NWS forecasters in 2008 to evaluate the:
 - Concept of short-fused hazard information on grids.
 - Concept of continuously translating threat areas.
 - Science of adding <u>uncertainty</u> information to warnings.
- This is an emerging concept and certainly not set in stone
- This work must consider many intersecting disciplines:
 - Meteorology
 - Technology
 - Social Science

Hazard Grids

- Each hazard type can be depicted on separ
 - Hail
 - Wind
 - Tornado
 - Lightning
 - Other Hazards
- Threat <u>subtypes</u> could also be depicted (hail size, wind speed)
- Consistency between forecasts and events
- Can be <u>aggregated</u> into simpler formats
- Allows for growth (added detail)

Translating threat areas

- Instead of the forecaster guessing at the swath...
- ...we propose that much more robust warning information can be derived if the forecaster instead determines
 - the initial threat area at time=0, along with
 - the <u>motion</u> vector, and adds
 - motion <u>uncertainty</u> information

Translating threat areas

 Site:
 KICT

 VST:
 09/21/2006
 20:37:13 UTC

 Prod:
 09/21/2006
 20:37:12 UTC

 VCP:
 121
 SMV: 200° 44 kts

 Tilt:
 0.496°

Select Product:

Select Floudct.	
BB	○ VI <u>L</u>
○ B <u>V</u>	○ V <u>I</u> LD
○ <u>S</u> RV	© Posh
○ s <u>w</u>	○ MEHS
○ ET	

Select Tilt:

0.5*	0.5*	0.5*	1.5°
1.5*	1.5*	2.4*	2.4°
2.4*	3.4°	3.4*	3.4°
4.3*	4.3*	6.0*	9.9*
14.6°	19.5°		

N/aminas

	Flash Flood - 0
7	Thunderstorm - 1
_	Tarresta O

Product Details:
Max: 58.0 dbz
Az: 336.6°
Ran: 76.3 nm

Automatically translating warnings

- Warning automatically translates downstream based on storm motion until adjusted or cancelled ("SVS"-like updating).
- Provides meaningful information about times of arrival and departure.
- Removes warning from area where threat has passed.

A B

Both "A" and "B" get equitable lead time

Probabilities

- Can include probabilistic trend information on the grids
 - Integration over time results in a probabilistic swath
- Pet Proportionals 20 COD (2007 (2001 14 a) Side UTC)

- Probabilities can be derived from a combination of:
 - Human expertise
 - Storm-type climatology statistics
 - Ensemble numerical guidance ("Warn On Forecast")

An early trial showed success!

Possible Advantages of PHI

- Improved time specificity (hazard arrival and departure)
- Improved location specificity (smaller aerial coverage, moves with storm)
- Updates continuously in real-time to reflect changes in storm motion and evolution
- Defines type of threat (wind, hail, tornado, lightning)
- Allows for longer lead-times, though with higher uncertainty
- The high detail grids can be aggregated into simpler formats supporting legacy systems.

We envision this as the road map to Warn-on-Forecast

- Today: Warn via
 extrapolation of past and current hazard information.
- Tomorrow: Warn on predicted development of structures using high-resolution ensemble storm-scale numerical models.
- Warnings (which are just short-term forecasts) become more uncertain with time, therefore the solution will require a probabilistic approach.

- Many opportunities for public-private partnerships
- Adaptive warnings allow users to set their threshold criteria, or allow third-party enabling technology/systems to do this for them

For super-users: Longer lead time ... greater

uncertainty

Managers of large venues

Geo-located cell phones and navigation systems

Facilities with long lead-time needs

Gridded Probabilistic Hazard

- Convert probabilities to a DHS-like "Threat Level Index".
- Intersect threat GIS layer with demographic GIS layers to create tailored calls-to-action
- Different calls-to-action based on combination of hazard threat level and unique (and sometimes dynamic)

exposure/response times

- Any high resolution grid (space and time) can be aggregated into simpler formats
 - Supports legacy county-based warning systems (television crawls, local and NOAA Weather radio).
 - Not every user needs to see the probabilities.

- Can issue hazard grids at probability values *below* expected thresholds for issuing today's warnings.
 - Provide greater lead time to high risk users.
 - Blend warning probabilities with SPC watch and outlook probabilities for seamless hazard information across all time and space scales.

FAQ: "Will the public understand probabilistic warnings?"

Answer:

The Public >

A monolithic mass with equal needs

Gridded Probabilistic Hazard

FAQ: "Will the public understand probabilistic warnings?"

Answer:

The Public =

Spectrum of Warning Users with differing ne

ariacea Probabilistic Hazara

FAQ: "Will the public understand probabilistic warnings?"

Answer:

The Public =

Spectrum of Warning Users with differing ne

ariacea Probabilistic Hazara

Risk = Hazard * Exposure * Response Time

Tornado, wind, hail, other hazards

How to account for this?

"Beyond Storm-Based Warnings" Advanced WAS*IS Workshop - Sept. 2008

- Meteorologists (researchers and forecasters)
- Social Scientists
- Emergency Managers
- Geographers
- Educators
- **E**conomists
- Anthropologists
- Media
- Private Industry

Themes for discussion

Inertia:

- Is it possible to move away from "one size fits all" warnings?
- Vulnerability and cultural groups:
 - Handling the spectrum of users without being overwhelmed by
 - Understanding how people make decisions to take certain actions
- Verification:
 - Do the current measures of skill really capture how well we are doing?
 - What socially relevant verification measures can we develop and use?

*Integrated studies Integrated Integrated Studies Integrated Integrated Studies Integrated Integrate Themes for discussion

Communication:

- How do we develop meaningful scientific ways to convey uncertainty in warnings?
- What are the best ways to convert gridded probabilistic hazard information to useful products?

Preparedness:

- How can we best stress the need for action before the storm arrives?
 - Long-term (months) to short-term (hours)
- What kind of training and education is required to ensure appropriate understanding for various end-users?

Experimentation:

How might we add a social science component to the PHI experiments in the Hazardous Weather Testbed?

Questions?

Greg.Stumpf@noaa.gov CIMMS/NWS/MDL

Kristin.Kuhlman@noaa.gov CIMMS/NSSL

